If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2.333X-2=0
a = 1; b = 2.333; c = -2;
Δ = b2-4ac
Δ = 2.3332-4·1·(-2)
Δ = 13.442889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2.333)-\sqrt{13.442889}}{2*1}=\frac{-2.333-\sqrt{13.442889}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2.333)+\sqrt{13.442889}}{2*1}=\frac{-2.333+\sqrt{13.442889}}{2} $
| -.7t^2+42t-315=0 | | (2x+6)+(x-7)+(5x-17)=180 | | 4+3x-6=3x+-x | | 5-x/4=x+2 | | 6+5b=-2+4b | | 4−6n=60−2n | | 45/x=27 | | x-12.18=13.45 | | X^2+7/3x-2=0 | | 5x-2=8x=16 | | 7f^2+12f+4=0 | | -6(3x+4)=5(-3-5)-(3x-1) | | 40-6n=2(4-5n) | | 13a-24=3a+12 | | 10-2x=4x+7 | | 2t+6=-6 | | 92+w)-4w=3w-10 | | 2x0=C | | -9x/2=81 | | k(k+1)=5.25 | | 3a+12=13a-24 | | 8+2(w+4)=6 | | 1.35x=5.40 | | 2(6d3)=18-3(16-3d) | | 25+5s=65 | | 5x-3=2×+18 | | 1.25x^2+4x+7=0 | | 6y=-2(1-5y)+6 | | -4(-2x-3)=6(x+2)+2 | | 3x^2+22=15x+10 | | -5x-2x=3x+40 | | 20=-5a+4 |